![Learning to align: a statistical approach thumbnail](https://apiminio.videolectures.net/vln/lectures/3258/1/en/thumbnail.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=masoud%2F20250113%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250113T045446Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=fe83079ade39ef7f29a58357f588bd72d08e46d57e41beaf8f8c6ac8d31932f7)
en-de
en-es
en-fr
en-pt
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Learning to align: a statistical approach
Published on Oct 08, 200721305 Views
We present a new machine learning approach to the inverse parametric sequence alignment problem: given as training examples a set of correct pairwise global alignments, find the parameter values tha
Related categories
Chapter list
Learning to Align: a Statistical Approach00:00
Outline00:20
Sequence Alignment pt 100:59
Sequence Alignment pt 201:12
Sequence Alignment pt 301:37
Sequence Alignment pt 401:56
Moments of the Scores02:43
The Z-Score03:24
Computing the Z-Score pt 104:04
Computing the Z-Score pt 204:49
Computing the Z-Score pt 305:26
IPSAP05:59
Z-Score Maximization pt 107:52
Z-Score Maximization pt 209:17
Iterative Algorithm pt 110:37
Z-Score Maximization pt 2 (a)11:01
Iterative Algorithm pt 1 (a)11:12
Z-Score Maximization pt 2 (b)11:20
Iterative Algorithm pt 211:29
Experimental Results pt 112:38
Experimental Results pt 213:32
Experimental Results pt 314:21
Summary15:04