![Gaussian Process: Practical Course thumbnail](https://apiminio.videolectures.net/vln/lectures/19313/1/en/thumbnail.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=masoud%2F20250122%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250122T210128Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=24fc716d402f67843253b0216f95ccc26ce83f0b5bc97cf10da887c062c00171)
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Gaussian Process: Practical Course
Published on Jan 15, 20138942 Views
Related categories
Chapter list
Gaussian Process: Practical Course00:00
GPML Toolbox by C.E. Rasmussen and H. Nickisch00:00
GPML Toolbox: Overview00:49
GPML Toolbox: Supporting structures and functions02:09
GPML Toolbox: Specifying model properties04:35
Inference Methods05:46
Likelihood functions08:43
GPML Toolbox: Compatibility matrix09:31
Mean functions11:04
Covariance functions: Simple12:07
Covariance functions: Composite12:08
The gp function: Overview - 112:18
The gp function: Overview - 218:33
The gp function: Overview - 319:31
The gp function: Process input arguments20:15
The gp function: Check & initialize hyperparameters20:56
The gp function: Do inference – issue a warning if it fails in training mode & try to recover21:41
The gp function: Compute test predictions23:01
The gp function: Make predictions – for all test points in a mini-batch24:07
Inference Methods24:47
Marginal Likelihood vs Cross Validation25:33